乐文书包网

手机浏览器扫描二维码访问

第214章 事实真相→四元数→扩展到五元数(第1页)

我记得上大学时,我的数学老师是个个子矮小的廖教授,纺大教授,这么多年过去了,他给我们讲课时那自信满满的样子,我就会不自觉的露出笑容,即便如此,当年教授给我们的知识也很多被遗忘了,知识就是这样,长期不用了,就会遗忘了,只有不停的去使用,你才是它的主人,一旦撒手,它就是你的主人,它认识你,你不认识它!

就比如我现在心心念念的去追寻的四维时空转换问题,其实当初大学老师都教过我们了。只是那些书都在我原来的房间楼梯间里发霉了!

现在回想起来,真不能怪我,知识用来方恨少,提笔欲书坎坷多!

下面我们就来回顾一下四元数的前世今生:

四元数(Quaternions)是一种扩展了复数系统的数系,由爱尔兰数学家威廉·罗恩·哈密顿(WilliamRowanHamilton)在1843年提出。四元数可以用来表示三维空间中的旋转,这在计算机图形学、机器人学和航空航天工程等领域非常有用。

一个四元数可以写成以下形式:

[q=a+bi+cj+dk]

其中,(a)、(b)、(c)、(d)是实数,而(i)、(j)、(k)是四元数的三个虚部单位。这三个虚部单位满足以下乘法规则:

[i^2=j^2=k^2=ijk=-1]

[ij=k,quadji=-k]

[jk=i,quadkj=-i]

[ki=j,quadik=-j]

这些规则表明四元数的乘法不满足交换律,即一般情况下(pqeqqp)。

四元数的一个重要应用是表示三维空间中的旋转。特别是,一个单位四元数可以表示一个旋转轴和一个旋转角度。给定一个单位四元数(q=a+bi+cj+dk),其中(a^2+b^2+c^2+d^2=1),它可以用来表示围绕轴((theta,u))的旋转,其中(theta)是旋转角度,(u=(b,c,d))是旋转轴的方向向量,(a=cos(theta2))。

使用四元数进行旋转的优势在于避免了万向节锁(gimballock)的问题,并且在数值上更加稳定。此外,四元数的插值(如球面线性插值,Slerp)提供了平滑的旋转路径,这在动画和实时渲染中非常有用。

四元数在现代技术中的应用包括但不限于:

计算机图形学中的三维模型旋转

航空航天工程中的姿态控制

机器人学中的运动规划

虚拟现实和增强现实中的头部追踪

游戏开发中的角色和物体的旋转

四元数的概念虽然相对复杂,但由于其在处理旋转时的效率和稳定性,它们在需要高效、准确地处理旋转操作的领域中得到了广泛的应用。

接下来我们把它扩展到一般的五元数和5*5的矩阵中按标准矩阵运算法则运算,来找出其规律!

在数学中,五元数(quintenions)并不是一个像四元数(quaternions)那样广为人知且有明确定义的代数结构。四元数是由威廉·罗恩·哈密顿(WilliamRowanHamilton)在1843年提出的,它们构成一个四维的超复数系统,具有特定的乘法规则。然而,对于五元数或其他更高维度的超复数系统,并没有一个统一的定义或者广泛接受的乘法规则。

如果我们试图构造一个五元数系统,我们可以考虑一个形如(q=a+bi+cj+dk+el)的表达式,其中(a,b,c,d,e)是实数,而(i,j,k,l)是五个虚部单位。但是,为了使这个系统成为一个代数,我们需要定义这些虚部单位之间的乘法规则,并且这些规则需要保证乘法的封闭性(即任意两个五元数的乘积仍然是五元数)。

在四元数中,虚部单位(i,j,k)的乘法规则是精心设计的,以满足特定的代数性质,例如无零因子(non-zerodivisors)和结合律(associativity)。然而,当我们尝试扩展到五元数时,要保持这些性质变得非常困难。实际上,如果要求乘法结合律,那么这样的五元数系统是不可能存在的,因为根据弗罗贝尼乌斯定理(Frobeniustheorem),实数域上的有限维可除代数只有三种:实数、复数和四元数。

尽管如此,数学家们仍然对探索更高维度的超复数系统感兴趣,这些系统可能具有不同的乘法规则和代数性质。这些探索可能会导致新的数学理论的发展,但截至目前,还没有一个像四元数那样具有明确乘法规则和广泛应用的“标准”五元数系统。

重回七零末  小三门  你回农村种地,怎么成大明星了?  农夫传奇  没问题老公  流氓魔主  逆水寒:有人赴约  蜥龙  错觉+新番外:后宫  妖异奇谈抄2追寻之章  电梯求生:且看我签到成神  无敌的我选择看小辈  拒嫁豪门:爱我请排队  人在斗破,添加好友就能变强!  梦之幻灵  别怕,亲爱的  相公救妻  星卡时代:开局神话级天赋  诸天一不小心成了太阳神  冰山爹地  

热门小说推荐
悦女吴县

悦女吴县

书名?阅女无限??呵呵,广大银民,请看清楚哦。吴县,这个二十岁的青涩小子,进城上学,居然一不留神,取悦于众多美女,在众女的帮助下,事业也是蒸蒸日上。且看主角如何将有限的生命,投入到吴县的悦女事业中去。蹩脚的猪脚,由一个初哥,逐渐成为花丛高手。...

鹿鼎风流记

鹿鼎风流记

少年附身韦小宝,和康熙做兄弟,唬弄皇帝有一手绝色美女尽收,色遍天下无敌手!睿智独立,诱惑惊艳的蓝色妖姬苏荃花中带刺刺中有花的火红玫瑰方怡温柔清新纯洁可人的水仙花沐剑屏空谷幽香,善解人意的解语花双儿倾国倾城,美丽绝伦的花中之王牡丹阿珂诱惑惊艳美艳毒辣的罂粟花建宁空灵纯洁娇艳精怪的山涧兰花曾柔...

超凡世界

超凡世界

地球少年江云卷入了一个神秘的超凡世界之中,获得了超凡之力,并且开始在地球以及一个个超凡世界,开启了自己追逐巅峰的超凡旅程。(ps已经完本异世之虫族无敌神卡神魔系统神魔无双机械神皇)...

天美地艳男人是山

天美地艳男人是山

从农村考入大学的庾明毕业后因为成了老厂长的乘龙快婿,后随老厂长进京,成为中央某部后备干部,并被下派到蓟原市任市长。然而,官运亨通的他因为妻子的奸情发生了婚变,蓟原市急欲接班当权的少壮派势力以为他没有了后台,便扯住其年轻恋爱时与恋人的越轨行为作文章,将其赶下台,多亏老省长爱惜人才,推荐其参加跨国合资公司总裁竞聘,才东山再起然而,仕途一旦顺风,官运一发不可收拾由于庾明联合地方政府开展棚户区改造工程受到了中央领导和老百姓的赞誉。在省代会上,他又被推举到了省长的重要岗位。一介平民跃升为省长...

倚天屠龙夺艳记

倚天屠龙夺艳记

赵敏的娇蛮狐媚周芷若的举止优雅小昭的温柔体贴不悔的秀丽美艳蛛儿的任性刁蛮  一梦醒来,该是倚天屠龙的另一个新主角上场了...

我的极品老婆们(都市特种兵)

我的极品老婆们(都市特种兵)

一个被部队开除军籍的特种兵回到了都市,看他如何在充满诱惑的都市里翻云覆雨...

每日热搜小说推荐