乐文书包网

手机浏览器扫描二维码访问

第3部分(第1页)

你会说,这个拍卖的规则不合理,纯粹是博弈论专家的构想,在实际中这样的拍卖不会出现。然而,它尽管只是一个模型,在实际中我们经常会看到此模型的博弈案例。3

在冷战期间,美苏为争夺霸权拼命发展武器,无论是原子弹、氢弹等核武器的研制,还是如隐形战斗机这样的常规武器的研制,双方均不甘落后。20世纪80年代,里根在位时准备启动“星球大战”计划,此举意味着两个超级大国的武器竞赛将进一步升级。美苏之间的武器竞赛就相当于这个骑虎难下博弈中双方轮番出价,双方均不断出更高的价,如果一方没有出最高的价钱,退了下来,即没有继续竞赛下去,那么意味着它在军备上的前期投入没有效果,打了水漂,而对方将赢得整个局面。但如果继续竞赛下去,一旦支撑不住,损失也就更大。

1991年苏联的垮台在一定程度上是军备竞赛的结果。苏联将整个力量放在军备竞赛上,而民用建设无法跟上,国力不济,最终退下阵来。里根的“星球大战”计划其目的就是要拖垮苏联。一旦进入骑虎难下的博弈,及早退出是明智之举,然而当局者往往做不到,这就是所谓当局者迷。这种骑虎难下的博弈经常出现在国家之间,也出现在企业或组织之间,当然个人之间也经常碰到。20世纪60年代,美国介入越南就是一个骑虎难下博弈。赌红了眼的赌徒输了钱还要继续赌下去以希望返本,也是骑虎难下博弈,其实,赌徒进入赌场开始赌博时,他已经进入了骑虎难下的状态,因为,赌场从概率上讲必定赢。4

博弈论专家将这里的骑虎难下博弈称为协和谬误。20世纪60年代,英国和法国政府联合投资开发大型超音速客机,即协和飞机。该种飞机机身大、设计豪华并且速度快。但是,英法政府发现:若继续投资开发这样的机型,花费会急剧增加,并且还不清楚这样的设计定位能否适应市场;而若停止研制,以前的投资将付诸东流。随着研制工作的深入,他们更是无法作出停止研制工作的决定。协和飞机最终研制成功,但因飞机的缺陷(如耗油大、噪音大、污染严重等等),它不适合市场,最终被市场淘汰,英法政府为此蒙受很大的损失。在这个研制过程中,如果英法政府能及早放弃飞机的开发工作,会使损失减少,但他们没能做到。

4.警察与小偷的故事——混合策略问题

纳什在《n人博弈的均衡点》这篇论文中,给出了均衡存在的简单证明,纳什说,在n个人的博弈中至少存在一个均衡,在这点上双方均不愿意先改变策略。这里的均衡点有可能是混合策略点。人们称它为纳什定理。

什么是混合策略?

我们来看一个混合策略的例子。警察部门负责一城市中某一区的治安。警察要对该区的A、B两地进行巡逻。假定该区有一群小偷,要实施偷盗。警察要防止这些小偷的偷盗,但因为设备有限,只有一部警车,警察只能一次在一个地方巡逻。而对于小偷而言,他们也只能去一个地方。假定A地需要保护的财产价值为2万元,B地的财产价值为1万元。若警察在某地进行巡逻,而小偷也选择了去该地,因警察在场,小偷无法偷盗该地的财物;若警察没有去某地巡逻而小偷选择了去该地,则小偷偷盗成功。警察怎么巡逻才能使效果最好?

一个明显的做法是,警察对A地进行巡逻,小偷去B地,这样,警察可以保住2万元的财产不被偷窃,而小偷的稳定收益为1万元。但是这种做法是警察的最好做法吗?警察有没有比这种策略更好的策略?

我们可以将警察与小偷之间的这个支付写成如下的支付矩阵。警察巡逻某地,偷盗者在该地无法实施偷盗,假定此时小偷的得益为0(没有收益),此时警察的得益为3(保住3万元)。

这个博弈也是常和博弈,它没有纯策略纳什均衡点,而有混合策略均衡点。这个混合策略均衡点下的策略选择是每个参与人的最优(混合)策略选择。

小偷(1)

警察

袭击A地

袭击B地

巡逻A地

3,0

2,1

巡逻B地

1,2

3,0  对于这个例子,警察的一个更好的策略是,警察用掷骰子的方法决定去A地还是B地。假定警察规定掷到1—4点去A地,掷到5、6两点去B地,这样警察有23的机会去A地进行巡逻,13的机会去B地。

而小偷的最优选择是:以同样掷骰子的办法决定去A地还是去B地偷盗,如掷到1—4点去B地,掷到5、6两点去A地,那么,小偷有13的机会去A地,23的机会去B地。

此时警察与小偷所采取的便是混合策略。

假如按这种策略,我们看一下双方的收益。警察的期望得益是:73万大于2。警察按此办法比只巡逻A地的收益更高。

一旦警察采取混合策略,小偷也采取混合策略,其最优混合策略下的收益为23万元。小偷的收益比警察只巡逻A地的收益要低。

因为:当警察去A地巡逻时,小偷有13的机会去A地,23的机会去B地,此时警察去A地的得益为:万元;当警察去B地时,同样,小偷有13的机会去A地,23的机会去B地,此时警察A地的得益为:万元。

警察总的得益为:万元。

同理,我们可得小偷的总的得益为23万元。

这里我们“让”警察和小偷掷骰子以确定去A地还是去B地,目的是要去A地和去B地之间确定一个概率分布,他们当然可用其他方式来确定这个概率分布。

幽灵行动之前哨  给外神打工的日子  荒野直播:小糊咖被毛绒绒包围了  织田小姐的咒术师生涯  疯了!首富竟是个恋爱脑  一醉山庄之红楼香灯醉吟惜  可以吃兔兔  你是不是输不起  天王  新乱世佳人  白莲花受他不走剧情  菲斯王族之天空与新生  论咒术与死神的相容性  卖女孩的小火柴  听说你混六扇门gl  随身空间之胖妞成长记  男朋友是买小鱼干送的!  姐姐对不起  易中天直面地方官员访谈录:成都方式  幼稚园全都重生了,除了……[九零]  

热门小说推荐
张三丰弟子现代生活录

张三丰弟子现代生活录

张湖畔,张三丰最出色的弟子,百年进入元婴期境界的修真奇才。他是张三丰飞升后张三丰所有仙器,灵药,甚至玄武大帝修炼仙境的唯一继承者,也是武当派最高者。在张三丰飞升后,奉师命下山修行。大学生,酒吧服务员,普通工人不同的身份,不同的生活,总是有丰富多彩的人生,不同的遭遇,动人的感情,总是让人沉醉不已。武林高手...

斗罗大陆

斗罗大陆

唐门外门弟子唐三,因偷学内门绝学为唐门所不容,跳崖明志时却发现没有死,反而以另外一个身份来到了另一个世界,一个属于武魂的世界,名叫斗罗大陆。这里没有魔法,没有斗气,没有武术,却有神奇的武魂。这里的每个人,在自己六岁的时候,都会在武魂殿中令武魂觉醒。武魂有动物,有植物,有器物,武魂可以辅助人们的日常生活。而其中一些特别出色的武魂却可以用来修炼并进行战斗,这个职业,是斗罗大陆上最为强大也是最荣耀的职业魂师  当唐门暗器来到斗罗大陆,当唐三武魂觉醒,他能否在这片武魂的世界再铸唐门的辉煌?他能否成为这个世界的主宰神...

悦女吴县

悦女吴县

书名?阅女无限??呵呵,广大银民,请看清楚哦。吴县,这个二十岁的青涩小子,进城上学,居然一不留神,取悦于众多美女,在众女的帮助下,事业也是蒸蒸日上。且看主角如何将有限的生命,投入到吴县的悦女事业中去。蹩脚的猪脚,由一个初哥,逐渐成为花丛高手。...

一揽众美在三国

一揽众美在三国

一个现代人,来到了古代,哇噻,美女如云呀,一个一个都要到手,战争阴谋铁血一揽众美,逍遥自来快乐似神仙本书集铁血与情感于一身为三国类中佳品。...

风流英雄猎艳记

风流英雄猎艳记

生长于孤儿院的少年刘翰和几女探险时偶得怪果奇蛇致使身体发生异变与众女合体并习得绝世武功和高超的医术为救人与本地黑帮发生冲突得贵人相助将其剿灭因而得罪日本黑道。参加中学生风采大赛获得保送大学机会。上大学时接受军方秘训后又有日本黑龙会追杀其消灭全部杀手后又参加了央视的星光大道和青歌大赛并取得非凡成绩。即赴台探亲帮助马当选总统世界巡演时与东突遭遇和达赖辩论发现超市支持藏独向世界揭露日本称霸全球的野心为此获得诺贝尔和平奖而在颁奖仪式上其却拒绝领奖主人公奇遇不断出现艳遇连绵不...

神印王座

神印王座

魔族强势,在人类即将被灭绝之时,六大圣殿崛起,带领着人类守住最后的领土。一名少年,为救母加入骑士圣殿,奇迹诡计,不断在他身上上演。在这人类六大圣殿与魔族七十二柱魔神相互倾轧的世界,他能否登上象征着骑...

每日热搜小说推荐