乐文书包网

手机浏览器扫描二维码访问

50洛伦兹变换介绍50(第1页)

爱因斯坦50洛伦兹变换介绍

洛伦兹变换是狭义相对论中两个作相对匀速运动的惯性参考系(S和S′)之间的坐标变换,是观测者在不同惯性参考系之间对物理量进行测量时所进行的转换关系,在数学上表现为一套方程组。洛伦兹变换因其创立者——荷兰物理学家亨德里克·安东·洛伦兹(1853年7月18日-1928年2月4日)而得名。洛伦兹变换最初用来调和19世纪建立起来的经典电动力学同牛顿力学之间的矛盾,后来成为狭义相对论中的基本方程组。

1、研究历史

19世纪后期建立了麦克斯韦方程组,标志着经典电动力学取得巨大成功。然而麦克斯韦方程组在经典力学的伽利略变换下并不是协变的。

由麦克斯韦方程组可以得到电磁波的波动方程,由波动方程解出真空中的光速是一个常数。按照经典力学的时空观,这个结论应当只在某个特定的绝对静止的惯性参考系中成立,这个参考系就是以太。其它参考系中测量到的光速是以太中光速与观察者所在参考系相对以太参考系的速度的矢量叠加。然而1887年的迈克尔逊-莫雷实验测量不到地球相对于以太参考系的运动速度。1904年,洛伦兹提出了洛伦兹变换用于解释迈克尔逊-莫雷实验。根据他的设想,观察者相对于以太以一定速度运动时,以太(即空间介质)长度在运动方向上发生收缩,抵消了不同方向上的光速差异,这样就解释了迈克尔逊-莫雷实验的零结果。

1905年以前已经发现一些电磁现象与经典物理概念相抵触,它们是:

①迈克尔逊-莫雷实验没有观测到地球相对于以太的运动。

②运动物体的电磁感应现象表现出相对性——是磁体运动还是导体运动其效果一样。

③电子的惯性质量随电子运动速度的增加而变大。此外,电磁规律(麦克斯韦方程组)在伽利略变换下不是不变的,即是说电磁定律不满足牛顿力学中的伽利略相对性原理。

修改和发展牛顿理论使之能够圆满解释上述新现象成为19世纪末、20世纪初的当务之急。以洛伦兹为代表的许多物理学家在牛顿力学的框架内通过引入各种假设来对牛顿理论进行修补,最后引导出了许多新的与实验结果相符合的方程式,如时间变慢和长度收缩假说、质速关系式和质能关系式,甚至得到了洛伦兹变换。所有这些公式中全都包含了真空光速。如果只为解释已有的新现象,上述这些公式已经足够,但这些公式分别来自不同的假说或不同的模型,而不是共同出自同一个物理理论。而且,使用牛顿绝对时空观来对洛伦兹变换以及所含的真空光速进行解释时却遇到了概念上的困难。这种不协调的状况预示着旧的物理观念即将向新的物理观念的转变。

在洛伦兹理论中,变换所引入的量仅仅是数学上的辅助手段,并不包含相对论的时空观。爱因斯坦洞察到解决这种不协调状况的关键是同时性的定义,而牛顿时空理论(或伽利略变换)中的时间没有办法在现实世界中实现。为使用光信号对钟,爱因斯坦假定了单向光速是个常数且与光源的运动无关(光速不变原理)。爱因斯坦以观察到的事实为依据,把伽利略相对性原理直接推广为狭义相对性原理,立足于这两条基本原理,着眼于修正运动、时间、空间等基本概念,重新导出洛伦兹变换,并赋予洛伦兹变换崭新的物理内容。

在狭义相对论中,洛伦兹变换是最基本的关系式,狭义相对论的运动学结论和时空性质,如同时性的相对性、长度收缩、时间延缓、速度变换公式、相对论多普勒效应等都可以从洛伦兹变换中直接得出。如果速度v比光速с小很多,而且被观察的物体的运动速度也比光速小很多,则洛伦兹变换就与伽利略变换近似一样。对于日常的力学现象,使用伽利略变换就可以了。然而,对于运动物体的电磁现象,虽然物体的运动速度比光速小很多,但由于电磁相互作用的传播速度是光速,所以仍必须使用洛伦兹变换。

2、数学形式

洛伦兹提出洛伦兹变换是基于以太存在为前提的,然而以太被证实是不存在的,根据光速不变原理,相对于任何惯性参考系,光速都具有相同的数值。爱因斯坦据此提出了狭义相对论。在狭义相对论中,空间和时间并不相互独立,而是一个统一的四维时空整体,不同惯性参考系之间的变换关系式与洛伦兹变换在数学表达式上是一致的,即:

x′=(x-υt)√(1-υ2c2),

y′=y,

z′=z,

t′=(t-x·υc2)√(1-υ2c2)。

其中x、y、z、t分别是惯性坐标系S下的坐标和时间,x′、y′、z′、t′分别是惯性坐标系S′下的坐标和时间。v是S′坐标系相对于S坐标系的运动速度,方向沿X轴。

由狭义相对性原理,只需在上述洛伦兹变换中把v变成-v,x′、y′、z′、t′分别与x、y、z、t互换,就得到洛伦兹变换的反变换式:

x=(x′+υt)√(1-υ′2c2),

y=y′,

z=z′,

t=(t′+x′·υc2)√(1-υ2c2)。

洛伦兹变换是高速运动的宏观物体在不同惯性参考系之间进行坐标和时间变换的基本规律。当相对速度v远小于光速c时,洛伦兹变换退化为经典力学中的伽利略变换:

x′=x-v

y′=y

z′=z

t′=

所以,狭义相对论与经典力学并不矛盾,狭义相对论将经典力学扩展到了宏观物体在一切运动速度下的普遍情况,经典力学只是相对论在低速时(v远小于c)的近似情况。一般在处理运动速度不太高的物体时(如天体力学中计算行星的运行轨道),不需考虑到相对论效应,因为用相对论进行处理时计算往往变得非常繁琐,而结果与经典情况相差不大。当处理高速运动的物体时,比如高能加速器中的电子,则必须要考虑相对论效应对结果带来的修正。

3、初等数学推导洛伦兹变换

洛伦兹变换可以由狭义相对性原理和光速不变原理推导出来。下面根据这两个基本原理,推导坐标的变换式。

设想有两个惯性坐标系S系、S′系,S′系的原点O′相对S系的原点O以速率v沿X轴正方向运动。任意一事件在S系、S′系中的时空坐标分别为(x,y,z,t)、(x′,y′,z′,t′)。t、t′分别是S系和S′系时刻。两惯性坐标系重合时,分别开始计时。

超级冒牌召唤师  众生皆棋  后纪元的驭灵师  收押淑女  极品小农场  长河里的逆流人  长风破浪总有时  斗罗:武魂皮卡丘,人都电麻了  裂锦 匪我思存  风云神剑决  炮灰军嫂大翻身  我的女友身怀绝技  我在仙侠世界永生不死  撞上逃夫  许天师修仙传  结婚彩券  爱情未爆弹  仙门奇侠  汉朝四百余年  流氓保镖  

热门小说推荐
天美地艳男人是山

天美地艳男人是山

从农村考入大学的庾明毕业后因为成了老厂长的乘龙快婿,后随老厂长进京,成为中央某部后备干部,并被下派到蓟原市任市长。然而,官运亨通的他因为妻子的奸情发生了婚变,蓟原市急欲接班当权的少壮派势力以为他没有了后台,便扯住其年轻恋爱时与恋人的越轨行为作文章,将其赶下台,多亏老省长爱惜人才,推荐其参加跨国合资公司总裁竞聘,才东山再起然而,仕途一旦顺风,官运一发不可收拾由于庾明联合地方政府开展棚户区改造工程受到了中央领导和老百姓的赞誉。在省代会上,他又被推举到了省长的重要岗位。一介平民跃升为省长...

风流英雄猎艳记

风流英雄猎艳记

生长于孤儿院的少年刘翰和几女探险时偶得怪果奇蛇致使身体发生异变与众女合体并习得绝世武功和高超的医术为救人与本地黑帮发生冲突得贵人相助将其剿灭因而得罪日本黑道。参加中学生风采大赛获得保送大学机会。上大学时接受军方秘训后又有日本黑龙会追杀其消灭全部杀手后又参加了央视的星光大道和青歌大赛并取得非凡成绩。即赴台探亲帮助马当选总统世界巡演时与东突遭遇和达赖辩论发现超市支持藏独向世界揭露日本称霸全球的野心为此获得诺贝尔和平奖而在颁奖仪式上其却拒绝领奖主人公奇遇不断出现艳遇连绵不...

我的极品老婆们(都市特种兵)

我的极品老婆们(都市特种兵)

一个被部队开除军籍的特种兵回到了都市,看他如何在充满诱惑的都市里翻云覆雨...

超凡世界

超凡世界

地球少年江云卷入了一个神秘的超凡世界之中,获得了超凡之力,并且开始在地球以及一个个超凡世界,开启了自己追逐巅峰的超凡旅程。(ps已经完本异世之虫族无敌神卡神魔系统神魔无双机械神皇)...

鹿鼎风流记

鹿鼎风流记

少年附身韦小宝,和康熙做兄弟,唬弄皇帝有一手绝色美女尽收,色遍天下无敌手!睿智独立,诱惑惊艳的蓝色妖姬苏荃花中带刺刺中有花的火红玫瑰方怡温柔清新纯洁可人的水仙花沐剑屏空谷幽香,善解人意的解语花双儿倾国倾城,美丽绝伦的花中之王牡丹阿珂诱惑惊艳美艳毒辣的罂粟花建宁空灵纯洁娇艳精怪的山涧兰花曾柔...

魔师逆天

魔师逆天

前世孤苦一生,今世重生成兽,为何上天总是这样的捉弄!为何上天总是那样的不公!他不服,不服那命运的不公。自创妖修之法,将魔狮一族发展成为能够抗衡巨龙的麒麟一族,成就一代麒麟圣祖的威名。...

每日热搜小说推荐