手机浏览器扫描二维码访问
当然,林晓能够直接看出来,说明得出这个结论也并不难。
至于如何证明这个结论,对林晓来说也同样没什么难度,只不过想了想,他直接写下:
【观察4n+3和mp,我们易得mp都是形如4n+3这种形式的数。】
对于论文中有些不重要的步骤,大佬们一般都是直接用‘显而易见’、‘易得’等话语就直接略过去了,而对于林晓来说,虽然他自认不是大佬,不过用上一用还是没问题的。
“嗯,这里算是搞定了,现在可以将4x+3代入之前的关系式中了。”
林晓继续接下来的步骤。
只不过,虽然有了4x+3,但是接下来的步骤中依然困难重重,想要真正完成,依然还有些困难。
而时间也就这样慢慢过去,以林晓当前3%的大脑开发度,面对这样的难题依然得犯难,毕竟相对来说,讨论梅森素数分布的难度,是要比他之前研究的斐波那契数列更加困难。
……
【对于正整数a,b,我们定义一个关于f2的梅森素数(多项式)为一个形式为1+x^a(x+1)^b的不可约多项式。在这种情况下:最大公约数gcd(a,b)=1并且(a或b是奇数)……
对于s∈f2[x],表示为:—s由s用x+1代替x得到的多项式:s(x)=s(x+1)……】
“这样就进入到了多项式的领域了。”
林晓的变换构造函数中,就需要进入多项式当中,这样才能实现他对非线性多项式的统计。
但是,梅森数终究和斐波那契数列不同,我们可以将斐波那契数列列出无限个,但是梅森数,却始终受到我们当前所找到的最大质数的数量限制。
尽管大家都知道质数无穷,但是分解一个大数的质因子是很麻烦的,这也是为什么和素数有关的东西被广泛运用于密码学当中。
就在这时,林晓的门被敲响了,敲门的人是孙宇。
听到里面没有反应,孙宇无奈,林神这大概是又学入魔了。
不过,林晓之前告诉过他,如果敲门没有回应的话,他直接进去就行了,于是孙宇便直接打开了门,走了进去。
见到林晓果然端坐在桌子前,旁边叠满了一堆的草稿纸,孙宇悄悄走了上去,瞅了一眼,顿时想起了这东西会让自己道心不稳,当场差点没有瞎眼。
他迅速移开了眼睛,拍了拍林晓说道:“林神,去恰饭了,待会儿咱们还要去罗马尼亚大使馆弄签证呢,别忘了。”
林晓总算回过了神,听到孙宇的话后,便应道:“我知道了。”
低头看了看自己当前的进度,摇摇头,还是不太理想啊。
他现在开始从切圆多项式作为出发点,进行着自己的搭桥工作,但看起来还是有问题,现在也只能等之后再继续看看了,反正是7月15日之前提交报告。
不过,解决数学问题,也都是像这样,要慢慢的、一步步地来,出现问题是不可避免的,就算是试错也是一个过程。
所以也不需要灰心,更何况,林晓研究的可是素数领域中的世界性难题,他研究出来,别人还能够说他不行?
这就开玩笑了。
而旁边的孙宇看到林晓摇头,便不由问道:“林神,莫非你还遇到什么难题了?”
林晓点点头。
“我靠,居然还有能把你给难住的问题?”
孙宇一副大吃一惊的样子,林晓可是连世界难题都解决了的,还能遇到这么难的题?
他说道:“让我康康!”
名侦探柯南之警察故事 这个网游策划果然有问题林瑶 死神之这个系统有点怪段木 仙道禁书目录 超级兵痞 弥罗青卷云长空 我的轮回大世界 电影世界交换师 中国教练 埃提亚 职业超级英雄 虫族帝国 控球法师 隋末我为王 我,天煞孤星,爱好交友窦长生 洪荒时辰 养妖记 冒牌干部 零界使徒 萌萌山海经
一个一无是处的,被认为是废物和白痴家伙,把灵魂卖给了恶魔,能换取到什么?美色?力量?财富?权力? 颠覆这世界的所有规则吧,让我们遵寻着恶魔的轨迹 ...
赵敏的娇蛮狐媚周芷若的举止优雅小昭的温柔体贴不悔的秀丽美艳蛛儿的任性刁蛮 一梦醒来,该是倚天屠龙的另一个新主角上场了...
魔族强势,在人类即将被灭绝之时,六大圣殿崛起,带领着人类守住最后的领土。一名少年,为救母加入骑士圣殿,奇迹诡计,不断在他身上上演。在这人类六大圣殿与魔族七十二柱魔神相互倾轧的世界,他能否登上象征着骑...
一个现代人,来到了古代,哇噻,美女如云呀,一个一个都要到手,战争阴谋铁血一揽众美,逍遥自来快乐似神仙本书集铁血与情感于一身为三国类中佳品。...
神墓动画第二季,8月10日起每周六1000,优酷全网独播一个死去万载岁月的平凡青年从远古神墓中复活而出...
书名?阅女无限??呵呵,广大银民,请看清楚哦。吴县,这个二十岁的青涩小子,进城上学,居然一不留神,取悦于众多美女,在众女的帮助下,事业也是蒸蒸日上。且看主角如何将有限的生命,投入到吴县的悦女事业中去。蹩脚的猪脚,由一个初哥,逐渐成为花丛高手。...