手机浏览器扫描二维码访问
戴夫·
史密斯真的不可预测,有时候莱恩·
戴克斯特拉还是可以碰巧猜中他会投什么球,将球击出场外。而在橄榄球比赛中,第三次死球且距离底线只剩一码的时候,稳扎稳打的选择是中路推进;不过,重要的是投出一个出其不意的球,迫使守方不敢轻举妄动。一且这样的传球得逞,球迷和体育解说员们会为选择这一策略而欢呼雀跃,赞扬教练是一个天才。假如传球失败,教练就会遭到众人批评:他怎么可以把宝押在一记长传之上,而不是选择稳扎稳打的中路推进?
评判这名教练的策略的时机,是在他将这个策略用于任何特定情况之前。教练应该公告天下,说混合策略至关重要;中路推进仍然是一个稳扎稳打的选择,其原因恰恰在于部分防守力量一定会被那个代价巨大的长传吸引过去。不过,我们怀疑,哪怕这名教练真会在比赛之前将这番理论通过所有的报纸和电视频道公告天下,只要他仍会在比赛里选择一个长传且不幸落败,他还是免不了遭到众人批评,就跟他此前根本没费心教给公众有关博弈论的知识差不多。
8 .谎言的安全措施
假如你采用了自己的最佳混合策略,那么,另一个参与者能不能发现这一点无关紧要,只要他不能提前发现你通过自己的随机机制为某个具体情况确定的具体行动方针。对于你的随机策略,他无计可施,占不了你的便宜。均衡策略恰恰就是用来防止对方通过这样的方式占你的便宜。不过,假如出于某种原因,你没有采取自己的最佳混合策略,这时,保密就是关键。泄露这一信息会让你付出巨大代价。与此同时,你也有同样的机会使对手误解你的计划。
1944年6月,盟军筹备诺曼底登陆的时候,想方设法让敌人相信攻击点会在法国北部的港口加来。最具创意的一招,是把一个德国间谍变成一个双重间谍,却又不是一般的双重间谍。英国人费尽心机让德国人听说自己的间谍叛变了,却又不让他们知道这个消息是有意泄露的。为了使德国人知道自己作为一个双重间谍多么(不)可信,这个家伙向德国发回了一些最整脚的信息。德国人发现这些信息只要按照字面意思反过来理解就对了。这是关键的一步。当这名双重间谍报告说盟军将在诺曼底登陆时,他说的是实话,偏偏德国.人反过来理解,认为这进一步确认了加来才是攻击点。这个策略还有一个优点,即盟军登陆之后,德国人再也摸不透他们的间谍是不是一个真正的双重间谍。他一直是德国仅有的正确信息来源。随着他在德国人那边的可信度逐步恢复,英国人可以通过他发出错误信息,引诱德国人上钩。'4'这个故事的问题在于,德国人本来应该可以预计到英国人的策略,并分析得知他们的间谍有可能叛变。硬用混合或者随机策略的时候,你不是每一次都能愚弄对手,也不是任何一个特定时候都能让他上当。你能得到的最好结果是让他们不断猜测,且有时候可以引诱他们上当。在这方面,当你知道正在和你交谈的人出于自己的利益会有误导你的想法的时候,最佳选择可能是忽略他所说的一切,而不是按照字面意思理解或者断定应该反过来理解。
以下是关于商界两名竞争对手在华沙火车站狭路相逢的故事。
“你去哪儿?”一个人问。
“明斯克。”另一个人答。
“明斯克?你还真有种!我知道,你之所以告诉我说你要去明斯克,是因为你想让我相信你要去平斯克。可你没想到我当真知道你其实是要去明斯克。那么,你为什么要对我说谎呢?〃
'5'行动确实胜过言语一筹。通过观察你的对手的行动,你就能判断他想跟你说的事情究竟有几分可以相信。从我们列举的例子中可以看到,
你不能单单按照字面意思理解对手所说的事情。但这并不表示在你努力识破他的真实意图时,应该忽略他的行动。一方按照怎样的比例混合其均衡策略,关键取决于他的得益。因此,观察一个参与者的行动可以提供一些有关正在使用的混合比例的信息,同时这种观察也是一个很有价值的证据,有助于推断对手的得益。扑克游戏的叫牌过程就是一个很好的例子。
扑克玩家都知道采用混合策略的必要性。约翰·麦克唐纳(John
McDonald)有这样的建议:“扑克玩家应该隐蔽在自相矛盾的面具后面。好的扑克玩家必须避免一成不变的策略,随机行动,偶尔还要走过头,违反正确策略的基本原则。”'6'一个“谨小慎微”的玩家难得大胜一回;没有人会跟他加码。他可能赢得许多小赌注,最后却不可避免会成为一个输家。一个经常虚张声势的“大大咧咧”的玩家,总会有人向他摊牌,于是也免不了失败的下场。最佳策略是将这两种策略混合使用。
假设你已经知道,一个经常遇到的扑克对手遇到手风顺的时候,会有23的机会加码,13的机会摊牌。假如手风不顺,则会有23的机会退出,13的机会加码。(一般而言,你在虚张声势的时候摊牌并不明智,因为你没有取胜的牌面。)于是,你可以画出图7…8,显示他采取各种行动的概率。
在他出牌之前,你相信他拿到一手好牌和一手坏牌的可能性是相等的。由于他的混合概率取决于他拿到什么牌,你就能从他的叫牌方式中得到更多信息。假如你看见他退出,你可以肯定他拿到了一手坏牌。假如他摊牌,你就知道他拿到了一手好牌。但是这两种情形下,赌博的过程已经结束。假如他加码,他拿到一手好牌的概率就是2:1
。虽然他的叫牌不一定精确反映他拿到了什么牌,但你得到的信息还是会比刚刚开始玩牌的时候多。假如听到对方加码,你就可以将他拿到一手好牌的概率从12提高为23。①①
在听见对方叫牌的条件下,估算概率采用了一种称为贝叶斯法则的数学技巧。在听到对方叫“X”,的条件下,对方有一手好牌的概率等于对方拿到一手好牌而又叫X的概率除以他叫“X”的总概率所得的商。于是,听见对方叫“退出”就表示他必然拿到一手坏牌,因为一个拿到一手好牌的人绝对不会“退出”。听见对方叫“摊牌”则表示他拿到一手好牌,因为玩家只会在拿到一手好牌的时候这么做。若是听见对方叫“加码”,计算就会稍微复杂一点:玩家拿到一手好牌且加码的概率等于(12)(23)=13,而玩家拿到一手坏牌且加码,即虚张声势的概率为(12)(13)=16。由此可知,听到对方叫“加码”的总概率等于13+16=12。根据贝叶斯法则,在听见对方叫“加码”的条件下,对方拿到一手好牌的概率等于对方拿到一手好牌且叫“加码”的概率除以他叫“加码”的总概率所得的商,即(13)(12)=23。图7…8
9 .出人意料
到目前为止,我们还只是将随机策略的应用集中在参与者利益严格对立的博弈上。在某种程度上显得更出人意料的还是找出随机行动的均衡的可能性,即便博弈的参与者存在共同利益。遇到这种情况,混合自己的策略可能导致各方得到更差的结果。不过,仅仅是结果更差并不表示这些策略就不是一个均衡:均衡是一种描述,不是一项指示。
混合自己的策略的原因来自合作失败。这个问题只出现在缺乏一个独一无二的均衡的时候。举个例子:两个人打电话聊天,说到一半线路中断,他们并不总是清楚谁应该再拨过去。由于缺乏沟通的能力,两个参与者不知道将会出现怎样的均衡。用不那么精确的话来说,随机化的均衡是在合作均衡之间寻求一种妥协的方式之一。下面的故事将会解释这种妥协的本质。
德拉(Della)与吉姆(Jim)属于大家会在小说里看到的那种夫妻;确切地说就是在欧·亨利(O。Henry)小说《麦琪的礼物》(The
专注--解读中国隐形冠军企业 刺客 YOU-身体使用手册 左公关右广告 完美大小姐 这些心态是必需的 傲世枭龙 智弈 飞得更高 笑傲江湖之天下无双 消逝的军号 今天,我们怎样评论中国 人生之钥 班主任兵法2·实战篇 拱出银行的小猪 给青年的十二封信 (今天开始做魔王同人)你是我的唯一,我是你的谁 圈单 沉浮史玉柱 老粗能干大事
魔族强势,在人类即将被灭绝之时,六大圣殿崛起,带领着人类守住最后的领土。一名少年,为救母加入骑士圣殿,奇迹诡计,不断在他身上上演。在这人类六大圣殿与魔族七十二柱魔神相互倾轧的世界,他能否登上象征着骑...
唐门外门弟子唐三,因偷学内门绝学为唐门所不容,跳崖明志时却发现没有死,反而以另外一个身份来到了另一个世界,一个属于武魂的世界,名叫斗罗大陆。这里没有魔法,没有斗气,没有武术,却有神奇的武魂。这里的每个人,在自己六岁的时候,都会在武魂殿中令武魂觉醒。武魂有动物,有植物,有器物,武魂可以辅助人们的日常生活。而其中一些特别出色的武魂却可以用来修炼并进行战斗,这个职业,是斗罗大陆上最为强大也是最荣耀的职业魂师 当唐门暗器来到斗罗大陆,当唐三武魂觉醒,他能否在这片武魂的世界再铸唐门的辉煌?他能否成为这个世界的主宰神...
生长于孤儿院的少年刘翰和几女探险时偶得怪果奇蛇致使身体发生异变与众女合体并习得绝世武功和高超的医术为救人与本地黑帮发生冲突得贵人相助将其剿灭因而得罪日本黑道。参加中学生风采大赛获得保送大学机会。上大学时接受军方秘训后又有日本黑龙会追杀其消灭全部杀手后又参加了央视的星光大道和青歌大赛并取得非凡成绩。即赴台探亲帮助马当选总统世界巡演时与东突遭遇和达赖辩论发现超市支持藏独向世界揭露日本称霸全球的野心为此获得诺贝尔和平奖而在颁奖仪式上其却拒绝领奖主人公奇遇不断出现艳遇连绵不...
赵敏的娇蛮狐媚周芷若的举止优雅小昭的温柔体贴不悔的秀丽美艳蛛儿的任性刁蛮 一梦醒来,该是倚天屠龙的另一个新主角上场了...
张湖畔,张三丰最出色的弟子,百年进入元婴期境界的修真奇才。他是张三丰飞升后张三丰所有仙器,灵药,甚至玄武大帝修炼仙境的唯一继承者,也是武当派最高者。在张三丰飞升后,奉师命下山修行。大学生,酒吧服务员,普通工人不同的身份,不同的生活,总是有丰富多彩的人生,不同的遭遇,动人的感情,总是让人沉醉不已。武林高手...
一个现代人,来到了古代,哇噻,美女如云呀,一个一个都要到手,战争阴谋铁血一揽众美,逍遥自来快乐似神仙本书集铁血与情感于一身为三国类中佳品。...